前两天看了一片文章,《解决方案的末日》。
我们刚刚启动解决方案的能力建设,没想到Harvard Business review就给解决方案判了死刑,而且还是在10年前。。。
文章的核心思路是,要关注变化,而不是采购:
Instead, they emphasize two nontraditional criteria.
- First, they put a premium on customer agility:
Can a customer act quickly and decisively when presented with a
compelling case, or is it hamstrung by structures and relationships
that stifle change?
- Second, they pursue customers that have an emerging need or are in a state of organizational flux, whether because of external pressures, such as regulatory reform, or because of internal pressures, such as a recent acquisition, a leadership turnover, or widespread dissatisfaction with current practices.
Since they’re already reexamining the status quo, these customers are
looking for insights and are naturally more receptive to the disruptive
ideas that star performers bring to the table. Stars, in other words,
place more emphasis on a customer’s potential to change than on its
potential to buy.
解决方案面向行业用户提供基于特定场景的技术方案,同时带动产品快速迭代。因此在华为,是把解决方案所在部门,命名为“MKT和解决方案部”,强调它的市场属性。
带动产品快速迭代,更多是美好愿望,否则2021年的华为也不会一口气成立5个行业军团,来完成多产粮食的目标。
华为的核心能力是通信、计算,煤矿有哪些业务需要通信和计算呢?传感器数据回传、视频监控吧(也是泛化的数据回传,上墙或AI识别之后上墙)。
应用AI技术,为什么一定要解决方案?需要先回答一个问题,为什么要考虑AI技术。摒弃那些庸俗的原因,比如领导要业绩,赶时髦等等,核心还是AI解决了以往一些技术没法解决的核心问题,比如感知能力提升,特别是非结构化数据到结构化数据,比如海量数据下的快速决策。
但是这些能力的门槛已经被开源平台降低了很多,是技术不是产品,我们需要为这个发动机装底盘,然后在底盘上安装轮子,车厢去拉货,挖斗去装土,吊臂去吊装。。。
所以我们要考虑我们应该如何给算法装上翅膀?也就是如何清洗、应用这些数据???
如何整理这些结构化的数据!!!!!